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We suggest and substantiate a method for the construction of the solution of the 
boundary value problem of thermoviscoelasticity for nonhomogeneous media in 

the form of a power series in the solving operator of some auxiliary homogene- 

ous viscoelastic problem. 
Considerable attention has been given recently [l - 101 to the Boltzmann-Vol- 

terra boundary value problem of classical viscoelasticity. The problem of the 
uniqueness of the solution has been studied in [ 1, 21 and the existence of indiv- 
idual classes of solutions has been studied in p - 5]. Analytic methods for the 

construction of the solutions have been considered in [6 - lo] and in other papers. 

1. Fotmulrtion of the problem. The complete system of equations of the 
quasi-stafcs of a viscoelastic body in the case of a given temperature field has the form 

1111 Oii,j + fi = 0, oij = E$kl (&ttl- a/t,e), 28ij = Ui,j _t Uj,i (1.1) 

Here t) (z, t) is the temperature field, fi (z, t) is the volume density of the exterior 
forces, ui (X, t) are the quasi-static displacements, &ii (5, t) is the strain tensor, 
otj (5, t) is the stress tensor, aij is the constant tensor of the anisotropic thermal dil- 

ations, Eijkr* is the operator-tensor of anisotropic thermoviscoelasticityy. 2 is a point 
in the three-dimensional Euclidean space, and t denotes the time. As usual, a repeated 
index indicates summation from one to three, while a comma before an index denotes 

differentiation with respect to the corresponding coordinate. 
Making use of the symmetry of the operator-tensor , 

E&, = ET& = E$ = EElij = Eijrl - 5 3ijh.l b-7’, 4 a) (*) dT (1.2) 
0 

equations (1.1) can be written in the displacements as 

(E%c%,r),j + Ri = 0, gi = fi - akl (E?jkle),j 
(1.3) 

We assume that the viscoelastic body occupies the bounded domain a.The displace- 
ments and the forces on the surface 5’ of the body are denoted by ‘pi (z, t) and ‘I’i (5, t), 
respectively. Concerning the quasi-static conditions on the boundary s we assume that 
they satisfy the condition of self-conjugacy 

‘Pigi = O7 XE s, o<t<cu 

The fulfilment of this condition in the case of the first, second and third fundamental 
boundary value problems can be achieved by introducing in the domain Q sufficiently 
smooth auxiliary displacement and stress fields which remove the displacements and 
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forces on the boundary &’ or on its parts [la - 143. 
In the sequel the boundary conditions will be conside.red homogeneous 

% ISI = 0, %inj Is, = 0, s, f s, = s (1 A) 

Here nj is the exterior normal vector to the surface s. We represent the problem (1.3). 
(1.4) in the vector form 

v,u = g, XE n, u = 0, XES1, z = 0, x E s, 

(4.5) 

where I/, is the thermoviscoelasticity operator, 2 i = Oijnj is the stress vector on the 

surface S. bet h (5, t) be a sufficiently smooth vector, satisfying the conditions (1.5) 
on the boundary. We multiply both sides of Eq. (1.5) by h and we integrate over the 

domain 52. Since 

(1.6) 

we obtain the equality 

J hi,jE&lUk,ldQ = J higidQ 
n 

(1.7) 
ha 

The identity (1.6) define; some extension of the thermoviscoelasticity operator vt. The- 
refore every vector u which vanishes under the conditions (1.5) on the surface S and 
which satisfies identically the relation (1.7) for every vector h from some dense set, 
will be called a generalized solution of the boundary value problem (1.5). 

2. Reduction to an operator equation. We consider the set of the vectors 

M (QT), given in the cylinder QT = 52 X [O, 7’1, 0 < T < 00. We will say that 
the set M (@r) is the continuous extension in the cylinder & of the functions &f (Q), 

given in the domainSZ, if for every vector h (5, t) E M (QT) the following conditions 
hold; for every fixed t, E 10, TJ h (5, t,) E M (52) and h (a, t) are continuous with 

respect to f in the sense of the norm on the set M (Q). The latter allows us to introd- 

The existence of the norm (2.1) follows from the continuity of the norm on M (Cl) as a 
function of the parameter t and from the Weierstrass theorem on the least upper bound 

of a continuous function. Under such a construction of the set M (QT). all the fundam - 
ental properties (completeness, compactness, embedding) from the set M (ii?) are carried 
over to it. 

Let L, (Qr) be the continuous extension in the cylinder of the ordinary space of the 
vectors L, (Cl). We consider the set M (QT) of the vectors which are twice differentia- 
ble in the domain Q and which satisfy the homogeneous boundary conditions (1.4). The 
set M (&) is dense in Lz (QT), since it contains the set of finite, infinitely differenti- 

able functions in the domain SZ which is everywhere dense in L, (&-) . The closure of 
this set with respect to the norm generated by the inner product 

determines a Hilbert space H” (QT). It follows from the embedding theorem [15] that 



Perturbations in the boundary value problem of thermovlscoelastlcity 471 

H” (QT) = L, (QT) and for every elementu E Ho (QT)we have 

li”ll$(Q,, \ P < c II u IIHO(Q~) (1 < P < 6) (2.2) 
The constant cP depends also on the domain 52. 

First we assume that the operator-tensor Eijkr* is positive definite. This means that 
for every symmetric tensor yij we have the inequality 

EijktrijTkr > c’rij’rij (2.3) 

where the positive constant c does not depend on the tensor Eijkl and the point 5. 
The inequality (2.3) allows us to introduce on the set M (QT) the inner product 

(u. V)H(QT) = SllP (U’ V)If(62) = sup 
IH,(T s 

QQl,<T 0 
Eijk,Ui,Pk,dQ (2.4) 

which, by virtue of the symmetry of the tensor Eijkl is a bilinear form of the elastic 
deformation energy. The closure of the set kf (&) with respect to the norm generated 

by the inner product (2.4) leads to the Hilbert space H (Qr).The space H (Qs) is equi- 
valent to the spaceHo (Q~)in the sense that they consist of the same elements and that 
from the convergence in one space the convergence in the other space follows. Con- 

sequently,a (QT) c L, (VT). By virtue of (2.2) and Korn’s inequality [13], we have 

b+(QT) dbb(Q,) 9 ibbp(QT) Gcpb !WQT) (2.5) 

Obviously, the constants in (2.5) and (2.2) are distinct. 

We introduce the operator At such that for a fixed t E [O, T] for all vectors u, tr E 

H (QT) we have the identity 

Then the fundamental equality (1.7) can be represented as: 

(h. u)~(ha) - p (ha A ,u)H(Q) = (he g) (2.7) 

Here (h * g) is the usual inner product of the vectors with respect to the domain a, p is 
the perturbation parameter. For p = 1 we obtain (1.7). 

For every fixed vector g I!E L, (QT), 6/s < q the inner product (h-g) defines a linear 
functional on H (QT). Indeed, for every vector h E H (QT)from Holder’s inequality 

[ 151 and from the estimates (2.5) we have 

l (he g)l< II h IIL,w) U g Ilqp G 5) II g Ib,cw II h llww G C II 11 Ilww (24 
i.e. for the selected values of q the space H (8) is embedded in LP (Q) (1 < p < 
6). By virtue of Riesz’ theorem [16] there exists a unique element v E H (QT). such 
that (h . g) = (he \‘)~(o) (2.9) 

This gives the possibility to represent the equality (2. ‘7) in the form 

(lu - C”,A,u - v] ‘I1)H(o) = 0 

for every lr E H (QT). rom here it follows that 

11 - i_LA,u = \ (2.10) 

The right-hand side of the operator equation (2.10) is the solution of the elastic problem. 



Indeed, substituting in (2.7) ~1 = 0, we obtain 

(h.u)H(n, = (11-g) (2.11) 

From the uniqueness of the representation (2.9) it follows that v = u. But equality 
(2.11) determines [13] the inverse operator of the elastic problem 

u = E-l g, (Eu)i = - Eijh.&,i (2.12) 

It is easy to verify that this operator is selfadjoint and bounded 

11 E-‘!i! ~QT) G % 11 g b,(Qd 9 q 2615 (2.13) 

As a result the operator equation (2JO) is represented in the form 

t, - pA,u = E-lg (2.14) 

The following reduces to the investigation of the properties of this equation. 

3. Conrtruction of the solution. Aside from the condition (2.3) on the 
operator tensor ~??iikr* we impose an additional requirement: for every fixed values 

0 ,( t, ‘t < T the kernel 3ijkr (s, t, a) E C (s2); in addition 

II %/Cl (G t’s ‘G’) - 3ijh.l (x, tp 7) Ilc(~a) 4 0, t’ + t, a’ 3 ’ (3.1) 

Here c (a) is the space of continuous functions. 

Lemma 1. The operator At acts in the space H (QT) and we have the estimate 

II Au llffw <s r @, ‘G) j( u j(ff(Q) (T).dT (3.2) 
0 

where I? (t, r) is a continuous function, connected with the tensor aijkl and the domain 

s2. 
Proof. We evaluate the norm of the operator At. To this end we choose h 

and we make use of the identity (2.6). This gives 

From Buniakowski’s inequality we obtain t 

II Af U II&(Q) d II (Au )i,j $,(Sa) II 
s 

aijkl (5, h r) “k,l dz k,caa, 

0 

From the definition of the norm and the estimate (2.5) we have 

II (4 U)i.j IlLI <II -4 u llfp(sa) d c II 4 u llfqn, 6 i = 1, 2.3) 

Estimating the 
find 

Atu 

(3.3) 

(3.4) 

(3.5) 

second factor in (3.4) with the aid of Minkowski *s inequality [ 151, we 

(3.6) 

Making use of the inequalities (3.5). (3.6) from (3.4) we obtain the estimate (3.2) 
where 
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I’ (t, T) = c 2 Kij (t, z) (3.7) 
i,j=l 

Now it is easy to prove the strong continuity of the operator At with respect to t We 
have 

(4 WH@) + 7 ” ((A -I- Jz + Js) u-h),(,) (3.8) 

Here the following notation has been introduced for the operators 
t 

The relation (3.8) is obtained through the change of variable T’ = (t’ / t)r in the ope- 
rator At and identical transformations. For t’ - t the first term in (3.8) tends to zero. 

Let us show that the same holds for the other terms too. It is clear that 

(Jlu-WH (0) = ( ‘4 [u(,,~T)-u(21-r)].h)H(p) t (3.10) 

Making use of the Buniakowski’s inequality and then taking into account (3.2). we ob- 

(3.11) 

Since u (I, t) E H (Qr) by assumption and 1 h (rr,nl does not depend on t’. For the estim- 
ate of the second expression of (3.9) we apply Holder’s inequality with exponents p = 
9 = 2. Proceeding in the same way as we have done for the estimate (3.6), we obtain 

since the condition (3.1) holds. From (3.11) and (3.12) it follows that we also have 

I (Jsu.WH (n) I - 0, t’- t (3.13) 
The lemma is proved. 

Lemma 2. The operator A,‘is a Volterra operator in the space H (&). 
Proof. From Lemma 1 and from Riesz’ compactness criterion [16] it follows that 

the operator At is completely continuous in H (QT). It remains to prove [17] that the 



480 V.G.GXQTlOV 

resolvent (AZ - At), h = 11-l exists for all finite values of the parameter h, except for 
I = 0. We have co 

(3.14) 

Since -4, acts in H (QT), its power will also act in this space. In addition, we have the 
estimate 

I] 4% IIH (*) d s t r,_, (6 ~1 II h IIH (a) dr, hEH(QT) (3.15) 

0 

where I ,,_r (t, 7) is the ( n - 1 )-st iterate of the kernel (3.7). Indeed, by induction 

II A?+l h &r (n) = II A, WW 111-1 (n) \ < s r (h ~5) II Aznh IIH (n) dr Q (3.16) 

0 

t t 

< ‘I’ (f, z) dri r,_, (~9 0) II h IIH (0) do = j 11 hlh (0) de j s 
r (t, ~1 r,_, Wt 0) dt 

0 0 0 tl 

The last integral in (3.16) is the R -th iterate of the kernel r (t, r). Making use of the 
estimate (3.15), we obtain 

00 

II 2 ~-“4”h IIH (n) \ <(I+ i ll.l”~r,,(f,~~~.)d~llhll~cn, (3.17) 

n=o .%=I. 0 

i. e. the series for the resolvent is strongly majorized by the Neumann series for the us- 
ual Volterra operator, which, as is known, converges for every finite value of the para- 
meter h-l = p. The lemma is proved. 

Theorem 1. If the temperature field 8 (z, t) E W$) (QT) (p > 3) and the 

force-vector f (z, t) E L, (QT) (q > “/,),then there exists a unique solution u(z,r)~ 

H (VT), of the ther’moviscoelasticity problem which can be represented by the series 

u= i AtnE-lg (3.18) 
TI=o 

Proof. The operator tensor EfikI is an analytic function of the temperature [ll], 
therefore its properties in the domain 62 are determined entirely by the temperature 
field ( only in the case of temperature nonhomogeneity). By assumption, the tempera- 
ture field is Sobolev differentiable, and the derivatives are summable with exponent 
p>3. From the embedding theorem [15] it follows that in this case the temperature 

0 (x, t) E C(c),) i.e. it is a continuous function. Consequently, the operator tensor 

Etrl satisfies the additional requirement (3.1). The right-hand side of (1.3) g (z, t) E 

L, (QT) (4 9 ‘/s). Indeed, f (z, 1) E L, (QT) (q > 8/b) by assumption. The re- 
maining terms contain derivatives of the temperature, which are summable with high- 
er exponents. 

Thus, the conditions of the Theorem ensure the equivalence of the boundary value 
problem (1.5) of thermoviscoelasticity (in its generalized formulation (1.7)) with the 
operator equation (2.14) and also the solvability of the latter. Making use of Lemma 
2, for p = 1 we obtain the series (3.18). From the inequalities (3.17) and (2.3) we 
obtain the estimate of the solution 

I\'+ L T cc '11 E-1g ib(Q~) (3.19) 

where the constant cT ’ is expressed in terms of the norms in C (QT) of the kernels 
EIii,,.This can be easily verified on the basis of the equalities (3.6) and (3.9). 
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CTf = exp(T sup r(t,~)) = exp (CT.. 
O<t, r<T 

t3kImax~~3i~kl(z9 t9t) hQT) ) (3.20) 

Making use of the boundedness of the inverse operator of the elastic problem (2.13). we 

obtain 
II u IIH(QT) G CT II g IL,+QTJ , 4 > 6/s (3.21) 

Note. In the investigation of the second boundary value problem it is necessary to 
take into account that the initial set of functions M (QT) must satisfy the additional 

kinematic conditions 

CI 

udSi=O, 
c 

[rxu]dQ=O (3.22) 

n 
where r is the radius-vector of the point in the body. Furthermare. relative to the do- 
main 52 aside from the usual “cone condition” it is necessary to make some additional 

assumptions [ 131. 

4. On the efficirnoy of the solution. The construction of the solution 
(3.18) is based on the preliminary inversion of the operator of the elastic problem. The 

estimate (3.19). (3.20) show that the deviation from the elastic solution is larger if the 
time T and the norm of the tensor 3ijl,1 are larger. Practically this means that we will 
have an acceptable convergence of the series (3.18) only if the norm of the operators 
A t is small. Thus, there arises the problem of the efficiency of the solution. 

An improvement of the convergence can be obtained by a modification of the const- 

ruction of the solution. The operator tensor (1.2) is represented in the form 

E& = Eijk, - A’& ($.I) 

Eijkl = Eijkl - i 3;;kl (tq Z) (*) do, A;kl = S [3ijbl (2, t, t) - 3yjh.l (t, 7)) (*) dt 
0 0 

The homogeneous kernel E&,, is selected conveniently. In particular, we can take 

the average 
$jkl (t, r) = +-. 3ijkl (& t, T) dQ 

! 

or the value of the kernel aiiPl at some chiiacteristic point of the domain Q i- 8. 
Then the thermoviscoelastic operator is represented in the form 

V, = V,” -At (v,‘(.))i = Eijkl(.)k,lj, (At( =(ATj,,(*)k,,),j (4.2) 

in accordance with the selected problem of homogeneous viscoelasticity. The extension 
of the operators Vt“ and At to the set H (&) leads to the integral identities 

(h . F’ F’u)~(a) = (he [u - 4”ul )H(P), 

(4.3) 

(h* AtU)H(n) = J hi,j S [3ijkl(z, t, t) - 3$kl (t, z)I u/c,1 drdQ 
62 0 

In the same way as before (see Sect.2). the thermoviscoelasticit problem reduces to 
the operator equation u - A,” u - Atu = E-‘g (4.4) 
The operator I - Ato admits an inverse since it is a special case of the operator 
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1 - A t. Therefore Eq. (4.4) can be written as: 

u - B,u = V;-‘g 

B, = (I - A,“)-’ At, V;-’ = (I_ At”)-’ E-1 (4.5) 

where VP-’ is the inverse of the operator of the homogeneous viscoelastic problem. 
Based on the previous results we can verify that the operator Bt acts in H (VT) and is 

a Volterra operator in this space. 
Theorem 2. Under the conditions of Theorem 1 we represent the solution of the 

thermoviscoelasticity problem in the form 
;u 

u = 2 B,“V;-‘g (4.6) 
n=o 

The improved convergence of the series (4.6) in comparison with (3.18) is connected 
with the fact that by an appropriate choice of the tensor 3ijkr the norm of the opera- 
tor B, can be made sufficiently small, in particular when the tensor 3ijh.I is weakly 

nonhomogeneous 

x exp (CT max 
(4.7) 

For the derivation of (4. ‘7) we have made use of the estimates for the operators A, and 
I’-’ similar to that of (3.2) and (3.19). 

Thus, the process of constructing the solution of the boundary value problem of therm- 
oviscoelasticity reduces to the solution of some homogeneous viscoelastic problem with 

a subsequent computation of corrections due to the nonhomogeneity. The efficiency of 
the method will depend in a large degree from the selected homogeneous problem. In 

many cases, the solution of the homogeneous problem can be constructed elementarily, 
based on the well developed algebra of Volterra operators or on the methods of operat- 

ional calculus. 
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The problem of the imbedding of a solid, thin, well-lubricated cutting edge in 
a half-space of rigidly plastic hardening material under plane strain conditions 
is considered in a linear formulation. It is assumed that translational hardening 
[l] occurs. The problem turns out to be kinematically determinate. 

Directing the coordinate axes as shown in Fig. 1, a. let us write the equation of the 

Fig. 1, 

cutting edge surface as 

where 6 is a small dimensionless parameter, 
and f is a sufficiently smooth function, At 
the initial instant the material occupies the 

9 
half-space .r < 0. Reversing the motion, 
let us consider the cutting edge fixed, and 

the medium to be displaced progressively 


